# **Backup Buddy:** Wireless Backup Camera Group 10

Dylan Ortiz - CPE Coleman Rogers - CPE Luca Silvester - CPE Zak Slakoff - EE

#### **Motivation**

- More than 18,000 backup-related injuries occur in the US (200 being fatal)
- Driver visibility is limited during backup
- Average reaction time is 215ms, too slow for proper response
- Our design aims to improve driver awareness and safety



## **Goals and Objectives**

- Providing a live, wide angle video stream of the rear of the vehicle
- Provide alerts and data to indicate obstructions that are behind the car
- Create an easy to install hardware assembly
- Mobile application that interfaces with the system and offers configuration options.

## **Hardware Requirement Specifications**

| 1 | The system will require no more than 12V from its power source             |
|---|----------------------------------------------------------------------------|
| 2 | The system will weigh less than 10 pounds                                  |
| 3 | The face of the system will take up a space no larger than 16in x 10in     |
| 4 | The system will be able to accommodate up to 2A of current draw under load |
| 5 | The size of the PCB shall be no larger than 2.5in x 5in                    |

### **Software Requirement Specifications**

| 1 | The Android application will provide a visual graphic to indicate an obstruction the car is approaching                                 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2 | The Android application will provide an audible tone, with increasing speed as the car becomes closer to an obstruction                 |
| 3 | The system will alert the driver when obstructions that are behind the vehicle are within 5 feet and the size of 1 cubic foot or larger |
| 4 | Using an accelerometer the system will detect when the car is in motion, and if not in use will arm the security state of the app       |
| 5 | The video feed of the rear facing camera will have a framerate of at least 15 fps at any given time                                     |

## **Overall Block Diagram**







# Use Case Diagram



#### Microcontroller - MSP430-FR5969



| Spec                     | MSP430-FR5969 | MSP430-G2553 | ATmega328P   |
|--------------------------|---------------|--------------|--------------|
| Clock Speed              | 1-16MHz       | 1-16MHz      | 1-20MHz      |
| GPIO Pins                | 40            | 16           | 23           |
| Storage                  | 64KB (FRAM)   | 16KB (Flash) | 32KB (Flash) |
| Cost                     | \$3.86        | \$2.20       | \$2.01       |
| LPM Power<br>Consumption | 0.72 μW       | 0.90µW       | 1.35µW       |

# Wireless Technology Selected

| Spec                 | Bluetooth | Wi-Fi    | ZigBee     |
|----------------------|-----------|----------|------------|
| Transfer rate        | 3 Mbps    | 300Mbps  | 250 kbit/s |
| Power<br>consumption | 5-50ma    | 50-180mA | 5-25ma     |
| Range                | 25m       | 50m      | 10-100m    |

#### **Bluetooth Module - HC-06**

| Component            | HC-06    | HC-05      | НМ-10                 | RN-42      |
|----------------------|----------|------------|-----------------------|------------|
| Transfer rate        | 2 Mbps   | 2 Mbps     | 6 kbps                | 240 kbps   |
| Power<br>consumption | 40 / 8ma | 40ma / 8ma | 50ma / 8.5ma<br>800ua | 30ma / 3ma |
| Range                | 10m      | 10m        | 3m                    | 20m        |
| Price                | \$3.50   | \$3.50     | \$8.99                | \$15.73    |



#### **Microcomputer For Streaming Video**

| Component            | Raspberry Pi 3B+        | Banana Pi                | TI-DaVinci<br>(TMS320DM6446) |
|----------------------|-------------------------|--------------------------|------------------------------|
| Transfer rate        | 300 Mbps                | 600 Mbps                 | 100Mbps                      |
| Power<br>Consumption | 600ma - 2.4A            | 600ma - 2A               | 5V - 2A                      |
| CPU                  | ARM 1.4GHz Quad<br>Core | ARM 1.2 GHz<br>Quad Core | 600 MHz Quad<br>Core 32bit   |
| Ram                  | 1GB                     | 1GB                      | 16KB                         |
| Size                 | 85mm x 56mm             | 92mm x 60mm              | Chip                         |
| Price                | \$39.99                 | \$54.99                  | \$46.32 (chip only)          |



#### **Camera Selection - OV5647 Wide Angle**

| Component            | Omnivision<br>5647 (Wide<br>angle Lens) | Raspberry Pi<br>Camera | Omnivision 5647<br>With IR |
|----------------------|-----------------------------------------|------------------------|----------------------------|
| Field of view        | 160                                     | 62                     | 69.9                       |
| Power<br>Consumption | 96ma                                    | 120ma                  | 120ma                      |
| Size                 | 36mm x 36mm                             | 25mm x 23mm            | 36mm x 36mm                |
| Price                | \$26.99                                 | \$25                   | \$74.89                    |



### Accelerometer - MMA8452Q

| Component                | MMA8452Q          | ADXL335                | TDK ICM-20948     |
|--------------------------|-------------------|------------------------|-------------------|
| Output Data<br>Rates     | 1.56Hz to 800Hz   | 0.5 to<br>1600Hz/550Hz | 400kHz to<br>7MHz |
| Digital<br>Resolution    | 8-bits or 12-bits | None                   | 16-Bit            |
| Programming<br>Interface | i2C               | None                   | SPI or I2C        |
| Cost                     | \$2.95            | \$2.05                 | \$5.10            |



#### **Ultrasonic Sensor - HY-SR05**

| Component                | HY-SR05     | HC-SR04     | SU04        |
|--------------------------|-------------|-------------|-------------|
| Range                    | 2cm - 4m    | 2cm - 4m    | 40cm-4.5m   |
| Field of View            | 15 degrees  | 15 degrees  | 60 degrees  |
| Programming<br>Interface | UART        | UART        | I2C, UART   |
| Pins                     | 5           | 4           | 4           |
| Size                     | 45mm x 21mm | 45mm x 21mm | 19mm x 21mm |
| Cost                     | \$3.95      | \$3.49      | \$14.99     |



## **Power Options**

| Specs            | Battery                                  | Brake Lights | Solar Panel<br>(Always On) |
|------------------|------------------------------------------|--------------|----------------------------|
| Battery Life     | 12hr (active) -<br>11 months (low power) | Indefinite   | Unreliable                 |
| Start Up Time    | 20 seconds                               | 1-2min       | 20 seconds                 |
| Easy to install? | Yes                                      | No           | Yes                        |







## **Battery Selection**

| Specs                 | <mark>LG MJ1</mark><br>(Li-Ion) | Tenergy 10706<br>(NiMH) | SparkFun PRT - 09100<br>(Alkaline) |
|-----------------------|---------------------------------|-------------------------|------------------------------------|
| Self-discharge/day    | 0.1%                            | 1%                      | <0.01%                             |
| mAh                   | 3400-3500                       | 1800-2000               | 500-2300                           |
| Voltage per cell      | 2.5 - 4.2                       | 1.2 - 0.9               | 0.9-1.5                            |
| Cost per cell         | \$7                             | 3.48                    | 0.50                               |
| Weight                | 49 g                            | 30 g                    | 23 g                               |
| Size                  | 65mm x 18mm                     | 42.5mm x 17mm           | 53mm x 14mm                        |
| Max charge current    | 3.5 A                           | 1A                      | NA                                 |
| Max discharge current | 10 A                            | 9 A                     | 1A                                 |

#### **Schematic - Power**

LOAD

10uF



## **Charge Controller - MCP73871**

| Component                          | MCP73871 | Microchip<br>MCP73831 | TI<br>BQ24650 |
|------------------------------------|----------|-----------------------|---------------|
| Input Voltage                      | 0V - 6V  | 3.75V-6V              | 5-28V         |
| Battery status<br>indicator        | 3 states | 3 states              | 3 states      |
| Max. battery charge current        | 1A       | 500 mA                | 20 A          |
| External<br>components<br>required | 9        | 5                     | 27            |
| Price                              | \$1.84   | \$0.61                | \$4.43        |

#### **Charge Controller - MCP73871**



USB+DC input/Over-voltage protection LEDs with charging status Temperature sensing Charge current regulation

#### Voltage Regulator - 3.3V - TPS 63051

| Specs                         | TPS63051            | TPS64203         | MCP1700                     |
|-------------------------------|---------------------|------------------|-----------------------------|
| Voltage input2.5V - 5.5Vrange |                     | 1.8V - 6.5V      | 2.3V - 6V                   |
| Voltage output                | Voltage output 3.3V |                  | 1.2V - 5V                   |
| Max. current                  | 1A                  | 3A               | 250mA                       |
| Operating Temp.               | -40°C - 85°C        | -30°C - 65°C     | -40°C - 125°C               |
| <b>Efficiency</b> 90%-95%     |                     | 80%-85%          | 79%-91%                     |
| Switching2.5 MHzfrequency     |                     | 800 kHz          | NA/ LDO Linear<br>Regulator |
| Price                         | \$1.66 from T.I.    | \$1.36 from T.I. | \$0.37 from Microchip       |

## Voltage Regulator - 5V - TPS 61232

| Specs                               | TPS61232                      | TPS61253A    | MIC29301                   |  |
|-------------------------------------|-------------------------------|--------------|----------------------------|--|
| Voltage input<br>range              | Voltage input2.3V - 5.5Vrange |              | -20V - 60V                 |  |
| Voltage output                      | ge output 5V                  |              | 5V                         |  |
| Max. current 2.1A                   |                               | 1.5A         | 5A                         |  |
| <b>Operating Temp.</b> -40°C - 85°C |                               | -40°C - 85°C | -40°C - 125°C              |  |
| Efficiency Up to 94%                |                               | Up to 95%    | 60%-84%                    |  |
| Switching2 MHzfrequency             |                               | 3.5 MHz      | NA/LDO Linear<br>Regulator |  |
| Price                               | \$1.66                        | \$1.18       | \$4.31                     |  |

## **MCU Schematic**



Bluetooth

MMA8452Q Accelerometer -i2C

TXB0104 Level Shifter -GPIO

HC-SR05 Ultrasonic

## **Logic Level Shifter - TXB0104**

| Specs                     | TXB0104                                   | LSF0204                                | Voltage divider               |
|---------------------------|-------------------------------------------|----------------------------------------|-------------------------------|
| Bit size                  | 4-bits<br>Bi-directional                  | 4-bits<br>Bi-directional               | Any size<br>Uni-directional   |
| Logic Voltage Capability  | 1.2V - 3.6V port A<br>1.65V - 5.5V port B | 1V - 4.5V port A<br>1.8V - 5.5V port B | Depends on<br>resistor values |
| Propagation delay         | 1-4 nanoseconds                           | 1.5 nanoseconds                        | NA                            |
| Max. logic output current | 100mA                                     | 64 mA                                  | NA                            |
| Clock skew                | 0.5 nanoseconds                           | Depends on PCB                         | NA                            |
| Price                     | \$1.25 from T.I.                          | \$0.98 from T.I.                       | \$0.15                        |



## **Battery Life**

| Component               | Active mode current<br>draw | Low-power mode current<br>draw |
|-------------------------|-----------------------------|--------------------------------|
| MCU (MSP430FR59691)     | 100 µA                      | 0.40 µA                        |
| Raspberry Pi module     | 450 mA                      | 150 µA                         |
| Ultrasonic Sensors (3)  | 45 mA                       | 0 mA (off)                     |
| Accelerometer           | 165 µA                      | 6 µA                           |
| Bluetooth Module        | 30 mA                       | 1 mA                           |
| Camera                  | 96 mA                       | 20 µA                          |
| All components together | 599.765 mA                  | 1.158 mA                       |

In low power mode: (7000 mAh)/(1.158 mA) = 6044 hours = **251 days** In active mode: (7000 mAh) / (599.765 mA) = **11.7 hours** 

# **PCB Drawings**

#### 1st Gen: 120 mm x 40 mm



#### **Changes**

- Fixed missing pads
- Added charge controller

#### 2nd Gen: 156 mm x 40 mm



## **PCB Final Drawing**

#### 156 mm x 56mm



#### **Changes**

- Changed ultrasonic pins to use trigger and echo on GPIO
- Added a level shifter to accommodate extra ultrasonic to GPIO communication
- Made resistors and capacitors slightly bigger
- Put Bluetooth chip on-board
- Added external pins for GPIO to connect to Raspberry Pi

# Mobile App Development: Android vs iOS



| Specs                      | Android          | iOS            |
|----------------------------|------------------|----------------|
| Programming Language       | Java             | Swift          |
| Required Hardware/Software | macOS or Windows | macOS specific |
| Marketshare                | More             | Less           |
| Documentation/Resources    | Abundant         | Limited        |

## Mobile App - Main Menu









## **Mobile App - Camera View**





# **Mobile App - Security View**





#### Admin Content

#### **Work Distribution**

| Member  | Embedded<br>Development | Android<br>App | Circuit<br>Design | PCB<br>Design | Raspberry<br>Pi Video | 3D Model<br>Design |
|---------|-------------------------|----------------|-------------------|---------------|-----------------------|--------------------|
| Dylan   | Р                       |                | S                 | S             |                       | Ρ                  |
| Coleman | Р                       | Р              | S                 |               |                       |                    |
| Luca    |                         | Р              | S                 |               | Р                     |                    |
| Zak     | S                       |                | Р                 | Р             |                       |                    |

## **Financing - Major Components**

| ltem               | Part Number     | QTY | Source           | Raw Cost | Used Cost |
|--------------------|-----------------|-----|------------------|----------|-----------|
| Ultrasonic Sensors | HC-SR05         | 4   | Amazon           | \$15.98  | \$11.97   |
| Accelerometer      | MMA8452Q        | 4   | Karlson Robotics | \$25.76  | \$2.95    |
| Microcontroller    | MSP430FR5969    | 4   | ТІ               | \$34.56  | \$3.86    |
| BT Module          | HC-06           | 1   | Amazon           | \$8.99   | \$8.99    |
| Sleepy Pi          | Sleepy Pi       | 1   | Spell Foundry    | \$55.95  | \$0.00    |
| Camera             | Omnivision 5467 | 2   | Amazon           | \$53.98  | \$26.39   |
| Raspberry Pi       | Pi 3B+          | 1   | Amazon           | \$35.99  | \$35.99   |
| TOTAL              |                 |     |                  | \$231.21 | \$90.15   |

## Financing - PCB & Related

| ltem                | Part Number      | QTY | Source     | Raw Cost | Used Cost |
|---------------------|------------------|-----|------------|----------|-----------|
| 3.3V Regulator      | TPS63051YFFR     | 5   | TI         | \$0.00   | \$0.00    |
| 5V Regulator        | TPS61253YFFR     | 5   | ТІ         | \$0.00   | \$0.00    |
| Lithium Ion Battery | LG INR 18650 MJ1 | 2   | Amazon     | \$14.98  | \$14.98   |
| Charge Controller   | MCP73871         | 3   | DigiKey    | \$5.52   | \$1.84    |
| РСВ                 | Custom           | 20  | PCBWay     | \$105.00 | \$5.25    |
| Enclosure           | Wood             | 1   | Home Depot | \$22.70  | \$5.67    |
| TOTAL               |                  |     |            | \$148.20 | \$27.74   |

## **Financing - Totals**

| Description              | Raw Cost | Used Cost |  |
|--------------------------|----------|-----------|--|
| Major Components         | \$231.21 | \$90.15   |  |
| PCB/Secondary Components | \$148.20 | \$27.74   |  |
| Development              | \$17.49  | \$0.00    |  |
| TOTAL                    | \$396.90 | \$117.89  |  |
| Expected Budget          | \$500.00 | \$200.00  |  |

#### **Issues & Challenges**

- Latency of the video stream was poor Solution: Moved to MJPG stream, little to no encoding
- Ultrasonic sensors not working in a single pin mode Solution: Updated PCB design to 2 pin model
- Sensor data was larger than 8-bits Solution: Break up and send in frames over bluetooth
- Faulted components on the main PCB Solution: Power with older model

